TeXsor3DG

An Explicit 3D Cartesian Discontinous Galerkin Spectral Element Compressible Navier-Stokes Solver

Andrew C. Kirby & Dimitri J. Mavriplis

Department of Mechanical Engineering University of Wyoming

Applied Modeling & Simulation Seminar Series NASA Ames Research Center August 12, 2014

Motivation

High order methods in aerodynamics
Higher accuracy with fewer degrees of freedom
Fewer elements needed
Nodal Discontinuous Galerkin finite elements
Cartesian Setting-Higher efficiency per degree of freedom

Governing Equations

Compressible Navier-Stokes equations

$$\frac{\partial U_m}{\partial t} + \frac{\partial F_{mi}}{\partial x_i} = 0$$

Conservative variables $U = \{\rho, \rho u, \rho v, \rho w, \rho E\}^T$

$$F = \left\{ \begin{array}{cccc} \rho u & \rho v & \rho w \\ \rho u^2 + P - \tau_{11} & \rho uv - \tau_{12} & \rho uw - \tau_{13} \\ \rho uv - \tau_{21} & \rho v^2 + P - \tau_{22} & \rho vw - \tau_{23} \\ \rho uw - \tau_{31} & \rho vw - \tau_{32} & \rho w^2 + P - \tau_{33} \\ \rho uH - \tau_{1j}u_j + q_1 & \rho vH - \tau_{2j}u_j + q_2 & \rho wH - \tau_{3j}u_j + q_3 \end{array} \right\}$$

$$\rho E = \frac{P}{\gamma - 1} + \frac{1}{2}\rho(u^2 + v^2 + w^2)$$

DG Formulation

Multiply by test function and integrate

$$\int_{\Omega} \Psi_r \left(\frac{\partial U_m}{\partial t} + \frac{\partial F_{mi}}{\partial x_i} \right) \mathrm{d}\Omega = \int_{\Omega} \Psi_r S_m \mathrm{d}\Omega$$

Integrate by parts

$$R_{mr} = \int_{\Omega} \left(\Psi_r \frac{\partial U_m}{\partial t} - \Psi_r S_m - \frac{\partial \Psi_r}{\partial x_i} F_{mi} \right) d\Omega + \int_{\Gamma} \Psi_r F_{mi} n_i d\Gamma = 0$$

Inviscid flux: Lax-Friedrichs and Roe

Viscous flux: symmetric interior penalty (SIP)

Tensor Basis Functions

Letting $\Psi_{ijk} = \phi_{\xi_i^1} \phi_{\xi_j^2} \phi_{\xi_k^3}$ for $i, j, k = 0, \dots, M$ and solution expansion coefficients a, written as:

$$U_{m}(\xi,t) = \sum_{k=0}^{M} \sum_{i=0}^{M} \sum_{j=0}^{M} a_{ijk}(t) \phi_{\xi_{i}^{1}} \phi_{\xi_{j}^{2}} \phi_{\xi_{k}^{3}}$$

Let $\phi_{\xi_i} = \mathcal{L}_i$, the 1-D Lagrange polynomial using the Gauss-Legendre quadrature points.

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element—all DOF close in memory

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element—all DOF close in memory
 - suited for massively parallel HPC type architectures

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element–all DOF close in memory
 - suited for massively parallel HPC type architectures
 - use coarser grids
 - overhead for AMR reduced and grid related issues

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element–all DOF close in memory
 - suited for massively parallel HPC type architectures
 - use coarser grids
 - overhead for AMR reduced and grid related issues
- Cartesian framework
 - $dx \neq dy \neq dz$

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element–all DOF close in memory
 - suited for massively parallel HPC type architectures
 - use coarser grids
 - overhead for AMR reduced and grid related issues
- Cartesian framework
 - $dx \neq dy \neq dz$
 - element Jacobians become simple scalar multiplications

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element–all DOF close in memory
 - suited for massively parallel HPC type architectures
 - use coarser grids
 - overhead for AMR reduced and grid related issues
- Cartesian framework
 - $dx \neq dy \neq dz$
 - element Jacobians become simple scalar multiplications
 - several components of the governing equations vanish

- Nodal Discontinuous Galerkin Finite Elements
 - solution coefficients are the solutions at the quadrature points – mass matrix is diagonal
 - dense kernels
 - block matrix coupling is contained within an element–all DOF close in memory
 - suited for massively parallel HPC type architectures
 - use coarser grids
 - overhead for AMR reduced and grid related issues
- Cartesian framework
 - $dx \neq dy \neq dz$
 - element Jacobians become simple scalar multiplications
 - several components of the governing equations vanish
- Polynomial degree of p=63
 - Restricted by CPU RAM on computing nodes (p=15)

64th Order Solution

64th Order Solution

Solver Capabilities Cont.

- Explicit time stepping through Method of Lines
 - Forward Euler
 - 4th-order explicit Runge-Kutta
 - Low-storage Runge-Kutta 3rd Order (near future)

¹Design of a Variational Multiscale Method for Turbulent Compressible Flows

Solver Capabilities Cont.

- Explicit time stepping through Method of Lines
 - Forward Euler
 - 4th-order explicit Runge-Kutta
 - Low-storage Runge-Kutta 3rd Order (near future)
 - * explicit time step consistent with Laslo Diosady and Scott Murman¹

$$\delta t = min\left(\frac{S*h}{4(\|U\|+c)}, \frac{h^2}{\nu}\right)$$

$$h = \frac{min(dx, dy, dz)}{(p+1)^{2.5}}$$

$$S = \text{Number of Stages}$$

¹Design of a Variational Multiscale Method for Turbulent Compressible Flows

Solver Capabilities Cont.

- Explicit time stepping through Method of Lines
 - Forward Euler
 - 4th-order explicit Runge-Kutta
 - Low-storage Runge-Kutta 3rd Order (near future)
 - * explicit time step consistent with Laslo Diosady and Scott Murman¹

$$\delta t = min\left(\frac{S*h}{4(\|U\|+c)}, \frac{h^2}{\nu}\right)$$

$$h = \frac{min(dx, dy, dz)}{(p+1)^{2.5}}$$

$$S = \text{Number of Stages}$$

• Parallel through MPI

¹Design of a Variational Multiscale Method for Turbulent Compressible Flows

Validation Results: Ringleb Flow UNIVERSITY OF WVOMING

Problem Description²

Governing equations: 2D Euler equations with $\gamma = 1.4$

²http://www.as.dlr.de/hiocfd/case_c1.2.pdf

Validation Results: Ringleb-Rho UNIVERSITY OF WYOMING

Р	1	2	4	6	9
Slope	1.975562	3.056287	4.90858	7.016717	9.259090

Validation Results: Ringleb-RhoU UNIVERSITY OF WYOMING

Р	1	2	4	6	9
Slope	2.000943	2.912026	4.860378	6.937690	10.51220

Validation Results: Ringleb-RhoV UNIVERSITY

	Р	1	2	4	6	9
Ī	Slope	1.804886	2.877250	4.990545	7.481386	9.754523

Validation Results: Ringleb-RhoE UNIVERSITY

Р	1	2	4	6	9
Slope	1.974541	2.998977	4.906502	6.895422	9.141250

Validation Results: Taylor Green Vortex WVOMING

Problem Description³

Domain:
$$[-\pi L, \pi L]^3$$
 $M_0 = 0.1$
 $Re = 1600$
 $Pr = 0.71$
 $u = V_0 \sin(x/L) \cos(y/L) \cos(z/L)$
 $v = -V_0 \cos(x/L) \sin(y/L) \cos(z/L)$
 $w = 0$
 $p = \rho_0 V_0^2 \left[\frac{1}{\gamma M_0^2} + \frac{1}{16} \left(\cos(2x) + \sin(2y) \right) \left(\cos(2z) + 2 \right) \right]$

Mesh: 64x64x64 p = 4 (5th order)

³http://www.as.dlr.de/hiocfd/case_c3.5.pdf

Validation Results: Taylor Green Vortex UNIVERSITY OF WYOMING

Energy

Validation Results: Taylor Green Vortex UNIVERSITY OF WYOMING

Dissipation

Validation Results: Taylor Green Vortex UNIVERSITY OF WYOMING

Enstrophy

Timing Results

All results are computed in serial on Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory.

• Mount Moran TAU benchmark = 7.2 sec

Mount Moran Specs:

- 93.92 Tflops cluster serving the University of Wyoming
- 218 nodes with 2, eight-core Intel Xeon E5-2670 Sandy Bridge processors on each node (3,488)

Timing Results: 3D Euler

DOF= $(number of fields)(p+1)^3 NxNyNz$

Three-dimensional Euler Equations

Tillee-ullilensional Euler Equations						
Code	Order	DOF	Mesh Size	Time/Res/DOF		
Finite Difference	1	5,151,505	100 × 100 × 100	5.39e-8		
Finite Difference	3	5,151,505	$100\times100\times100$	8.37e-8		
Finite Difference	5	5,151,505	$100\times100\times100$	1.14e-7		
DGSEM	2	5,000,000	50×50×50	7.77e-8		
DGSEM	3	4,851,495	33x33x33	6.54e-8		
DGSEM	4	5,000,000	25×25×25	6.33e-8		
DGSEM	5	5,000,000	20×20×20	6.38e-8		
DGSEM	6	5,306,040	17×17×17	6.57e-8		
DGSEM	7	4,705,960	14×14×14	6.92e-8		
DGSEM	8	4,423,680	12×12×12	7.36e-8		
DGSEM	9	4,851,495	11×11×11	7.57e-8		
DGSEM	10	5,000,000	10×10×10	7.83e-8		
DGSEM	16	4,423,680	6×6×6	1.03e-7		
DGSEM	24	4,423,680	4×4×4	1.35e-7		
DGSEM	32	4,423,680	3x3x3	1.78e-7		
DGSEM	48	552,960	1×1×1	2.41e-7		

Timing Results: 3D Euler

Timing Results: 3D Euler

At 5th order, DGSEM is ∼twice as efficient!

Timing Results: Cartesian 3D Navier-Stokes UNIVERSITY OF WYOMING

DOF=(number of fields) $(p+1)^3 NxNyNz$

Three-dimensional Compressible Navier-Stokes Equations

Three difficultional Compressible Havier Otokes Equations					
Code	Order	DOF	Mesh Size	Time/Res/DOF	
DGSEM	2	5,000,000	50×50×50	2.74e-7	
DGSEM	3	4,851,495	33x33x33	2.59e-7	
DGSEM	4	5,000,000	25×25×25	2.45e-7	
DGSEM	5	5,000,000	20×20×20	2.68e-7	
DGSEM	6	5,306,040	17×17×17	2.97e-7	
DGSEM	7	4,705,960	14×14×14	3.25e-7	
DGSEM	8	4,423,680	12×12×12	3.30e-7	
DGSEM	9	4,851,495	11×11×11	3.63e-7	
DGSEM	10	5,000,000	10×10×10	3.87e-7	
DGSEM	16	4,423,680	6×6×6	8.30e-7	

Timing Results: Cartesian 3D Navier-Stokes UNIVERSITY

Laslo Diosady and Scott Murman $\approx 1.5e^{-7}$ (non-Cartesian) ⁴ F. Hindenlang, G. Gassner $\approx 4.0e^{-7}$ (non-Cartesian) ⁵

⁴Design of a Variational Multiscale Method for Turbulent Compressible Flows

⁵Explicit Discontinuous Galerkin methods for unsteady problems

Results: Parallel Scalability

- Strong Scalability
- Computed on Mount Moran and Yellowstone
- Taylor-Green Vortex

MPI Implementations:

- MPI Cartesian Topology
- MPI Derived Data Types
 - MPI_Type_Contiguous (x-y plane faces)
 - MPI_Type_Vector (x-z and y-z plane faces)

Yellowstone Strong Scalability Results

Following results are computed in parallel on Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory.

•Yellowstone TAU benchmark = 8.4 sec

Yellowstone Specs:

- 1.504-petaflops peak IBM iDataPlex cluster
- 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge) processors with Advanced Vector Extensions (AVX), 8 flops per clock (72,576)
- 144.58 TB total system memory

Results: Strong Scalability P = 4

Mesh Size: Nx=128, Ny=128, NZ=128

DOF(total) = 1,310,720,000

DOF=(number of fields) $(p+1)^3 NxNyNz$

Yellowstone Strong Scaling Results: P = 4

# Procs	DOF per Proc	Efficiency
1024*	1,280,000	1.0000
2048	640,000	0.9801
4096	320,000	0.9327
8192	160,000	0.9037
16384	80,000	0.8358

^{*}Assumed Perfect

Results: Strong Scalability P = 7

Mesh Size: Nx=128, Ny=128, NZ=128

DOF(total) = 5,368,709,120

DOF=(number of fields) $(p+1)^3 Nx Ny Nz$

Yellowstone Strong Scaling Results: P = 7

# Procs	DOF per Proc	Efficiency
1024*	5,242,880	1.0000
2048	2,621,440	0.9923
4096	1,310,720	0.9793
8192	665,360	0.9580
16384	327,680	0.9210

^{*}Assumed Perfect

Results: Strong Scalability P = 9

Mesh Size: Nx=128, Ny=128, NZ=128

DOF(total) = 10,485,760,000

DOF=(number of fields) $(p+1)^3 NxNyNz$

Yellowstone Strong Scaling Results: P = 9

# Procs	DOF per Proc	Efficiency
1024*	10,240,000	1.0000
2048	5,120,000	0.9877
4096	2,560,000	0.9768
8192	1,280,000	0.9633
16384	640,000	0.9340

^{*}Assumed Perfect

Results: Parallel Scalability

Future Work: Short Term Goals UNIVERSITY OF WYOMING

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

Future Work: Short Term Goals WVOMING

- Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver
 - Tamrex3DG = TeXsor3DG + SAMRAL
 - analogous version of SAMARC
 - different solution orders on different blocks

Future Work: Short Term Goals WVOMING

- Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver
 - Tamrex3DG = TeXsor3DG + SAMRAL
 - analogous version of SAMARC
 - different solution orders on different blocks
- 3D Navier-Stokes Dual Mesh/Dual Flow Solver

Future Work: Short Term Goals WVOMING

- Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver
 - Tamrex3DG = TeXsor3DG + SAMRAL
 - analogous version of SAMARC
 - different solution orders on different blocks
- 3D Navier-Stokes Dual Mesh/Dual Flow Solver
 - analogous version of HELIOS

Future Work: Short Term Goals cont. UNIVERSITY OF WYOMING

3D Navier-Stokes Dual Mesh/Dual Flow Solver

- Use Tamrex3DG in HELIOS?
- Dynamic LES Model
 - possible dealiasing required

- Dynamic LES Model
 - possible dealiasing required
- Particle Tracking
 - implement scalar equation

- Dynamic LES Model
 - possible dealiasing required
- Particle Tracking
 - implement scalar equation
- Newton Implicit Solver

- Dynamic LES Model
 - possible dealiasing required
- Particle Tracking
 - implement scalar equation
- Newton Implicit Solver
- Discrete Adjoint for design optimization and driver for AMR

- Dynamic LES Model
 - possible dealiasing required
- Particle Tracking
 - implement scalar equation
- Newton Implicit Solver
- Discrete Adjoint for design optimization and driver for AMR
- GPGPU version of TeXsor3DG

Special Thanks!

Jay Sitaraman-University of Wyoming (Helios) Andy Wissink-Army Aviation Development Directorate

Thanks!

- Office of Naval Research: ONR Grant N00014-14-1-0045 (Program Manager: Judah Milgram)
- Army Aviation Development Directorate
- High-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation
- University of Wyoming Advanced Research Computing Center
- NASA Ames

